Kaon Physics WG - Theory

Vincenzo Cirigliano Los Alamos National Laboratory

Contributions: Joachim Brod, Uli Haisch, Wolfgang Altmannshofer, Philippe Mertens, Stefania Gori

Outline

- Intensity frontier and Kaon physics
- SM predictions for "rare" K decays
- BSM
 - Model-independent considerations
 - Models (SUSY, RS, light sector)
- K decays at ORKA + Project X
 - theory homework

Intensity Frontier and Kaons

Goal (see Y. Grossman's talk): reconstruct the "New SM" dynamics

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{BSM}$$

We know it's there at some level

Eventually want to get its structure and parameters

Both Energy and Intensity Frontier needed:

- EWSB mechanism
- Discover new particles

- . . .

- CP violation (w/o flavor)
- Flavor symmetries (quarks, leptons)
- L and B violation

-

Intensity Frontier and Kaons

Goal (see Y. Grossman's talk): reconstruct the "New SM" dynamics

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{BSM}$$

We know it's there at some level

Eventually want to get its structure and parameters

Both Energy and Intensity Frontier needed:

- EWSB mechanism
- Discover new particles

- ...

- CP violation (w/o flavor)
- Flavor symmetries (quarks, leptons)
- L and B violation

- ...

Naons: central in understanding the (non-generic) flavor sector of $\mathcal{L}_{\mathsf{BSM}}$

- One observable: if clean enough, "discovery" potential $(O_{exp} \neq O_{SM})$
 - might reveal new source of symmetry violation (CP, ...)
 - no handle on underlying dynamics (multiple explanations)
- More observables (+ LHC): model discriminating power!
 - info on underlying (flavor) dynamics
 - if model is known (LHC?), disentangle parameters

- One observable: if clean enough, "discovery" potential $(O_{exp} \neq O_{SM})$
 - might reveal new source of symmetry violation (CP, ...)
 - no handle on underlying dynamics (multiple explanations)
- More observables (+ LHC): model discriminating power!
 - info on underlying (flavor) dynamics
 - if model is known (LHC?), disentangle parameters

 \downarrow

Points to the need to build a "research program":

- flagship measurements characterized by high discovery potential
- along the way measure all possible K modes: discriminating power

Project X can play a major role in this!

Flavor physics and K decays

• SM: very specific pattern of loop-induced $\Delta F=1$ and $\Delta F=2$ FCNC (GIM mechanism and CKM hierarchy)

Flavor physics and K decays

- SM: very specific pattern of loop-induced $\Delta F=1$ and $\Delta F=2$ FCNC (GIM mechanism and CKM hierarchy)
- Rare K decays are deep probe of new flavor-breaking structures

$$d_i \rightarrow d_j (\gamma, \ell^+\ell^-, \nu\bar{\nu})$$

- No SM tree-level contribution
- Strong suppression from λ^5 CKM factor (enhanced sensitivity to BSM effect)
- Predicted with high precision (if "short-distance" dominated)

$$A(s \to d)_{\rm S.D.} \sim \frac{C_{\rm SM}}{16\pi^2 M_W^2} y_t^2 V_{ts} V_{td}^* + \frac{C_{\rm new}}{\Lambda^2} \delta_{sd}$$

Flavor physics and K decays

- SM: very specific pattern of loop-induced $\Delta F=1$ and $\Delta F=2$ FCNC
 - Golden modes $(K \rightarrow \pi \nu \nu)$ provide a win-win opportunity
- Expect sizable [O(I)] NP effects (no λ^5 suppression)
 - Even if BSM effect is "small" (MFV, ...) can still detect it due to theoretically clean SM "background"
 - But there is more than golden modes (see later)

(if "short-distance" dominated)

on

$$A(s \to d)_{\rm S.D.} \sim \frac{C_{\rm SM}}{16\pi^2 M_W^2} y_t^2 V_{ts} V_{td}^* + \frac{C_{\rm new}}{\Lambda^2} \delta_{sd}$$

WG focused on the four cleanest modes

$$K^+ \rightarrow \pi^+ \nu \nu$$

$$K_L \rightarrow \pi^0 \ \nu \nu$$

$$K_L
ightarrow \pi^0 \; e^+ e^-$$

$$K^+\!\!\to\pi^+\,
u
u \qquad K_L\!\to\pi^0\,
u
u \qquad K_L\!\to\pi^0\,e^+e^- \qquad K_L\!\to\pi^0\,\mu^+\mu^-$$

- Clean short distance amplitude
- Sensitivity to different BSM operators
- Various degrees of "long distance" contamination
 - Small in $K \to \pi \nu \nu$ (negligible in K_L mode)
 - Sizable I.d. EM contaminations in $K \rightarrow \pi ee$, $\pi \mu \mu$, but controllable with input from other decays

Neutrino modes

- Why are we able to make precise predictions?
 - Short-distance (SD) contributions (Wilson coefficients) can be calculated precisely in perturbation theory
 - Semileptonic decays \Rightarrow extract matrix elements via isospin symmetry from $K_{\ell 3}$ decays [Marciano, Parsa '96]
 - quadratic GIM suppresses long-distance (LD) contributions
 - Error mainly parametric can be reduced in the future

Neutrino modes

$$\operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu}) \propto (\operatorname{Im} X)^2$$

$$\operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) \propto |X|^2$$

$$X = \frac{\lambda_t}{\lambda^5} X_t + \frac{\operatorname{Re}\lambda_c}{\lambda} P_{c,u}$$

$$\lambda_i = V_{is}^* V_{id}$$
, $\lambda \approx 0.23$, $X_t \approx 1.5$, $P_{c,u} \approx 0.4$

$K^+ \to \pi^+ \nu \bar{\nu}$: Error Budget

$$Br^{th}(K^+) = 7.81(75)(29) \times 10^{-11}$$

10%

 $\delta V_{cb}/V_{cb}=1\%$

$$17\% \ V_{cb}$$
 $19\% \ \delta P_{c,u}$ $18\% \ m_c, \ m_t, \ \alpha_s, \ s_W$ $11\% \ X_t$ $3\% \ \kappa_+$

$$Br^{th}(K^+) = 7.81(37)(29) \times 10^{-11}$$

6%

$K_L \rightarrow \pi^0 \nu \bar{\nu}$: Error Budget

$$Br^{th}(K_L) = 2.43(39)(6) \times 10^{-11}$$

15%

$$\delta V_{cb}/V_{cb}=1\%$$

$$Br^{th}(K_L) = 2.43(25)(6) \times 10^{-11}$$

10%

Charged lepton modes

Three contributions to $K_{\ell} \rightarrow \pi^{0} \ell^{+} \ell^{-}$

$$K_L o \pi^0 \ell^+ \ell^-$$

$$Q_{7V[A]} = (\overline{s}_L \gamma_\mu d_L)(\overline{\ell} \gamma^\mu [\gamma_5] \ell)$$

[Buchalla et al. '95]

CPC:
$$\frac{K_L}{\gamma} = \ell^-$$

Estimate from $K_L \to \pi^0 \gamma \gamma$ [Isidori et al. '04]

- Estimate from ϵ_K , $K_S \to \pi^0 \ell^+ \ell^-$ [D'Ambrosio et al. '98, Mescia et al. '06]
- Sign of interference with Q_{7V} ? [Buchalla et al. '03, Friot et al. '04; Bruno et al. '93]

Charged lepton modes

- Three contributions to $K_L \to \pi^0 \ell^+ \ell^-$
- Branching ratios

[Mertens, Smith '11]

$$B^{\text{theo}}(K_L \to \pi^0 e^+ e^-) = 3.23^{+0.91}_{-0.79} [1.37^{+0.55}_{-0.43}] \times 10^{-11}$$

 $B^{\text{theo}}(K_L \to \pi^0 \mu^+ \mu^-) = 1.29^{+0.24}_{-0.23} [0.86^{+0.18}_{-0.17}] \times 10^{-11}$

• Uncertainty dominated by $K_S \to \pi^0$ ee measurement

Rare K decays beyond the SM

Two ways to study new physics

Top-down approach:

- o concrete model of new physics
- o predict observables & correlations directly
- o are smoking gun signals possible?

Bottom-up approach:

- o what data can be obtained?
- o how is it parametrized $\mathcal{L}_{\text{eff}} = \sum C_i Q_i$ efficiently?
- o what can be learned about model classes?

Uli Haisch

(BSM EFT)

SUSY: Wolfgang's talk

RS: Stefania's talk

Dark sector: Philippe's talk

Uli's talk

EFT approach: Kaon scoresheet

$\mathcal{L}_{ ext{eff}}$ =	$=\sum_{m{i}} C_{m{i}} Q_{m{i}}$ Poperator operator	$K^+ o \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 u ar{ u}$	$K_L ightarrow \pi^0 l^+ l^-$	$K_L \to l^+ l^-$	$K^+ \to l^+ \nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	Дскм	€//€	ϵ_K	Uli Haisch S. Jaeger in MSSM?
$Q_{lq}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\bar{L}_L \gamma^\mu L_L)$	✓	✓	✓	hs	_	_	_	_	_	✓
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L)(\bar{L}_L \gamma^\mu \sigma^i L_L)$	✓	✓	✓	hs	hs	✓	✓	_	_	✓
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L)(\bar{l}_R \gamma^\mu l_R)$	_	_	1	hs	hs	1	1	_	_	small
Q_{ld}	$(\bar{d}_R \gamma_\mu s_R)(\bar{L}_L \gamma^\mu L_L)$	✓	✓	✓	hs	_	_	_	_	_	small
Q_{ed}	$(\bar{d}_R\gamma_\mu s_R)(\bar{l}_R\gamma^\mu l_R)$	_	_	1	hs	_	_	_	_	_	small
Q_{lq}^{\dagger}	$(ar{u}_R S_L)(ar{l}_R L_L)$	_	_	_	_	1	1	1	_	_	tiny
$(Q_{lq}^t)^{\dagger}$	$(\bar{u}_R \sigma_{\mu\nu} S_L)(\bar{l}_R \sigma^{\mu\nu} L_L)$	_	_	_	_	_	?	?	=	_	tiny
Q_{qde}	$(ar{d}_R S_L)(ar{L}_L l_R)$	_	_	1	1	_	_	_	_	-	tiny
Q_{qde}^{\dagger}	$(ar{D}_L s_R)(ar{l}_R L_L)$	_	_	1	1	1	1	1	_	_	large $\tan \beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	✓	✓	✓	hs	_	_	_	✓	(V)	✓
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\phi^\dagger D^\mu \sigma^i \phi)$	✓	✓	✓	hs	hs	✓	✓	✓	(√)	✓
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R) (\phi^\dagger D^\mu \phi)$	✓	✓	✓	hs	_	_		✓	(√)	large $\tan\beta$ (non-MFV)

- In this framework, can study both
 - "discovery potential" of rare decays (constraints from other observables): how large of an effect can we expect?
 - "discriminating power" (correlations among various observables)

- Focus on Z-penguins (operators involving Higgs field):
 - most interesting since they contribute to ε'/ε
 - largest contribution in most models

Z penguins

Left- and Right-handed Z penguins, modify FC Z-boson vertices

$$(V_{ts}^*V_{td}\,C_{\mathrm{SM}} + C_{\mathrm{NP}})\,\bar{d}_L\gamma_{\mu}s_LZ^{\mu} + \widetilde{C}_{\mathrm{NP}}\bar{d}_R\gamma_{\mu}s_RZ^{\mu}$$

 $C_{SM} \approx 0.8$

Rare decay BRs with non-standard Z penguins

$$Br(K_L \to \pi^0 \nu \bar{\nu}) \propto (\text{Im } X)^2$$

$$Br(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) \propto |X|^2$$

$$X = \frac{\lambda_t}{\lambda^5} X_t + \frac{\text{Re}\lambda_c}{\lambda} P_{c,u} + \frac{1}{\lambda^5} \left(C_{\text{NP}} + \tilde{C}_{\text{NP}} \right)$$

$$\lambda_i = V_{is}^* V_{id}, \quad \lambda \approx 0.23, \quad X_t \approx 1.5, \quad P_{c,u} \approx 0.4$$

Correlations in $K \rightarrow \pi \nu \nu$ modes

Large (order-of-magnitude) effects allowed, but ...

Anatomy of ε'/ε

Prediction for ε'/ε very sensitive to interplay between QCD (Q₆) & electroweak (Q₈) penguin operators:

$$\frac{\epsilon'}{\epsilon} \propto -\text{Im} \left[\lambda_t \left(-1.4 + 13.8 R_6 - 6.6 R_8 \right) + \left(1.5 + 0.1 R_6 - 13.3 R_8 \right) \left(\frac{C_{\text{NP}}}{C_{\text{NP}}} - \frac{\tilde{C}_{\text{NP}}}{C_{\text{NP}}} \right) \right]$$

$$R_6 \propto \langle (\pi\pi)_{I=0} | Q_6 | K \rangle \lesssim [0.8, 2.0]$$

$$R_8 \propto \langle (\pi\pi)_{I=2} | Q_8 | K \rangle \lesssim [0.8, 1.2]$$

ε'/ε Strikes Back

- Stringent correlation between ϵ ' and $K_L \to \pi^0 \nu \nu$: ~50% deviations from SM BR still possible
- Correlation present in MSSM, RS, compositeness, ...

Anatomy of Leptonic Modes

■ $K_L \to \pi^0 l^+ l^-$ modes receive contributions from (axial-) vector (A, V), (pseudo-)scalar (P, S), ... operators:

[for further details see Joachim's & Phillipe's talks]

Correlations of Leptonic Modes

- S, P also
- --- SM rescaled
- V, Aonly

rare semileptonic kaon channels also allow to disentangle S, P from V, A contributions

(Mescia-Smith-Trine,)

Rare K decays in SUSY

In the MSSM with MFV, the $K \to \pi \nu \bar{\nu}$ decays remain to a large extent SM-like. Visible deviations might come from a extended Higgs sector and are highly correlated between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

model independent MFV framework

MSSM with MFV

MSSM with MFV + extended Higgs sector In the MSSM beyond MFV, $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ can be modified independently and are unique probes of flavor violation in the up-squark sector. Several motivated frameworks exist that lead to O(1) modifications of the branching ratios

Isidori, Mescia, Paradisi, Smith, Trine, JHEP 0608(2006)

In the MSSM beyond MFV, $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ can be modified independently and are unique probes of flavor violation in the up-squark sector. Several motivated frameworks exist that lead to O(1) modifications of the branching ratios

result of a general scan of the MSSM parameter space, taking into account all relevant constraints (apart from ϵ'/ϵ !):

both branching ratios can be enhanced by more than an order of magnitude (corresponding regions of parameter space are to a certain amount fine-tuned)

exp. results already give non-trivial constraints on the MSSM parameter space

Buras, Ewerth, Jager, Rosiek, Nucl. Phys. B714 (2005)

Rare K decays in warped extra dims

 Sources of flavor violation: 5D Yukawa couplings and fermionic "bulk" mass parameters

Tree-level FCNCs

Sizable effects in both golden modes possible

• ϵ ' constraint disfavors very large effects $K_L \to \pi^0 \nu \nu$: but 50% deviations from SM BR still possible

Bauer, Casagrande, Haisch, Neubert, 2009 Correlations emerge among various BRs: falsifiable scenarios

Blanke, Buras, Duling, Gemmler, S.G., 2009

Result of the interplay of the coupling of Z with leptons & neutrinos

Measurement of both decays is a good test of the operator structure of the model

The dark side of $K \rightarrow \pi \nu \nu$

Rare K decay can help constraining light weakly coupled particles

Example 2: Kinetically-mixed light vector boson

Holdom '86 Arkani-Hamed et al. '08 Kamenik, Smith '11

$$\mathcal{L}_{kin} = \frac{\chi}{2} B_{\mu\nu} \times V^{\mu\nu} .$$

Example 3: Leptonic dark state (sterile neutrino,...)

Correlated neutral and charged current interactions:

$$\mathcal{H}_{eff} = \frac{1}{\Lambda^2} (\overline{d}_L s_R \otimes \overline{v}_L \psi + \overline{u}_L s_R \otimes \overline{\ell}_L \psi)$$

 K^+ U

Rare FCNC modes like $K \rightarrow \pi + \cancel{E}$ probe scales up to $\Lambda: 100 \text{ TeV}$.

Current universality test,

$$\mathcal{R}_{K}^{\exp} = \frac{\Gamma(K_{e2})^{SM} + \Gamma(K \to e\psi)}{\Gamma(K_{\mu 2})^{SM} + \Gamma(K \to \mu\psi)}$$

reaches a similar scale $\Lambda:~80~{
m TeV}$.

($\delta R_{\pi}^{\rm exp}$: 10^{-3} would probe Λ : 70 TeV)

Example 3: Leptonic dark state (sterile neutrino,...)

Correlated neutral and charged current interactions:

- Hopefully this "summary of summaries" gives you the sense of the breadth of physics that can be accessed with rare and not-so-rare K decays
- What is the role of Project X?

like $K \rightarrow \pi + E'$ probe scales up to Λ : 100 TeV.

$$\mathcal{R}_{K}^{\exp} = \frac{\Gamma(K_{e2})^{SM} + \Gamma(K \to e\psi)}{\Gamma(K_{\mu 2})^{SM} + \Gamma(K \to \mu\psi)}$$

reaches a similar scale $\Lambda:~80~{\rm TeV}$.

 $(\delta R_{\pi}^{\text{exp}}: 10^{-3} \text{ would probe } \Lambda: 70 \text{ TeV})$

Rare K decays at Project X

- What modes can be measured
 - $K^+ \rightarrow \pi^+ \nu \nu$: ORKA (MI) (start 2016) \rightarrow Project X
 - $K_L \rightarrow \pi^0 \nu \nu$: Project X phase I (start ~2020 ?) \rightarrow ...
 - $K_S / K_L \rightarrow \pi^0 e^+ e^-$ interference (parasitic?)
 - Many other opportunities where ORKA detector can provide a substantial improvement

Process	Current	ORKA
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	7 events	1000 events
$K^+ \rightarrow \pi^+ X^0$	$<0.73\times 10^{-10}$ @ 90% CL	$<2\times10^{-12}$
$K^+ \rightarrow \pi^+ \pi^0 \nu \bar{\nu}$	$<4.3 imes10^{-5}$	$<4 imes10^{-8}$
$K^+ \rightarrow \pi^+ \pi^0 X^0$	$<\sim4 imes10^{-5}$	$<4 imes10^{-8}$
$K^+ \rightarrow \pi^+ \gamma$	$< 2.3 \times 10^{-9}$	$< 6.4 \times 10^{-12}$
$K^+ \rightarrow \mu^+ \nu_{heavy}$	$< 2 \times 10^{-8} - 1 \times 10^{-7}$	$<1\times10^{-10}$
$K^+ \rightarrow \mu^+ \nu_{\mu} \nu_{\bar{\nu}}$	$< 6 \times 10^{-6}$	$<6 imes10^{-7}$
$K^+ \rightarrow \pi^+ \gamma \gamma$	293 events	200,000 events
$\Gamma(Ke2)/\Gamma(K\mu2)$	$\pm 0.5\%$	$\pm 0.1\%$
$\pi^0 \rightarrow \nu \bar{\nu}$	$<2.7\times10^{-7}$	$<5\times10^{-8}$ to $<4\times10^{-9}$
$\pi^0 \rightarrow \gamma X^0$	$< 5 imes 10^{-4}$	$< 2 \times 10^{-5}$

D. Bryman

Benchmark sensitivities

(for golden modes)

- Lattice QCD (+ B decays) will reduce in 5-10 year the dominant parametric uncertainty: V_{cb} to <1%
- LQCD will also attack the l.d. contributions (hard)

Quantity	CKM	expt. now	lattice now	2014 lat.	2020 lat.	non-lattice method
f_K/f_π	V_{us}	0.2%	0.6%	0.3%	0.1%	-
$f_{K\pi}(0)$	$V_{oldsymbol{u}oldsymbol{s}}$	0.2%	0.5%	0.2%	0.1%	1% (ChPT)
$B \to D^* \ell \nu$	V_{cb}	1.8%	1.8%	0.8%	< 0.5%	<2% (Incl. $b ightarrow c$)
$B \to D \ell \nu$	V_{cb}	4%	2%	< 2%		<2% (Incl. $b ightarrow c$)

J. Laiho, LQCD WG

- By 2020: $BR_{Th}(K^+ \to \pi^+ \nu \nu) @ 5\%$ and $BR_{Th}(K_L \to \pi^0 \nu \nu) @ 5\%$
- These figures should be the target for Project X experiments (by then NA62 will have ~10% measurement, KOTO few events)

- With this target precision retain "discovery potential" even in presence of the E' constraint
- This target precision makes
 Project X searches of K_L →
 π⁰νν with O(10) events not
 so exciting as a final goal, but
 only as a stepping stone
- 5% BR will be interesting anyways in 2025: it will either be measuring the flavor sector of something seen at the LHC or it will be an attempt to find a crack in the SM

$$\epsilon'/\epsilon \in [0.5, 2] (\epsilon'/\epsilon)_{\text{SM}}$$

$$\epsilon'/\epsilon \in [0.2, 5] (\epsilon'/\epsilon)_{\text{SM}}$$

Extra Slides

$K \rightarrow \pi \nu \overline{\nu}$ Prospects $K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$ $K^{0} \rightarrow \pi$

$$K^+ \rightarrow \pi^+ \nu \overline{\nu}$$

$$K_L^0 \to \pi^0 \nu \overline{\nu}$$

Now:
$$B(K^+ \to \pi^+ \nu \bar{\nu}) = 1.73^{+1.15}_{-1.05} \text{ xl } 0^{-10}$$

(7 events)

Future. Sensitivity at SM 7.8 $x10^{-11}$

Goals	NA62 CERN	ORKA FNAL MI	Proj.X
Events/ yr	40	200	340
S/N	5	5	5
Precision	10%	5%	3%

		_	0
Now:	$B(K^0)$	$\rightarrow \pi^0 \nu \nu$	$< 2.6 \times 10^{-8}$

Future: Sensitivity at SM 2.4×10^{-11}

Goals	кото *	Proj.X
	J-PARC	
Events/yr	~1	"200"
S/N	~1	5-10
Precision		5%

^{*} J-PARC plans a phase II to reach higher sensitivity.

Parametric uncertainties

- More on parametric uncertainties in $Br(K_L \to \pi^0 \nu \nu)$ A. Kronfeld
- Using CKM unitarity and dropping $|V_{tb}| 1$:

$$\frac{\text{Im} V_{ts}^* V_{td}}{|V_{us}|} = -\frac{|V_{cb}| \text{Im} V_{ub}}{|V_{us}|} = \frac{|V_{cb}| |V_{ub}| \sin \delta_{KM}}{|V_{us}|} = \frac{(A\lambda^2)(A\lambda^3 \eta)}{\lambda}$$

- In the next decade (to be safe), parametric uncertainty on BR will go down to ~4-5%
 - V_{us} @ 0.5%, V_{cb} @ 0.5% (exclusive + LQCD)
 - V_{ub} @ 2% (superB + LQCD)
 - $\sin \delta_{KM} @ 1\% -> 0.5\%$ (LHCb)

	SM	Experiment
$K^+ \to \pi^+ \nu \bar{\nu}$	$7.81(75)(29) \times 10^{-11}$	$(1.73^{+1.15}_{-1.05}) \times 10^{-10} \frac{E787}{E949}$
$K_L o \pi^0 u \bar{ u}$	$2.43(39)(6) \times 10^{-11}$	$< 2.6 \times 10^{-8}$ E391a
$K_L \rightarrow \pi^0 e^+ e^-$	$(3.23^{+0.91}_{-0.79}) \times 10^{-11}$	$< 28 \times 10^{-11} \text{ KTEV}$
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	$(1.29^{+0.24}_{-0.23}) \times 10^{-11}$	$< 38 \times 10^{-11} \text{ KTEV}$

- "Discovery potential": disagreement with SM prediction would signal BSM effects
- Example: $K^+ \rightarrow \pi^+ \nu \nu$ (graphical representation)

▶ If neutralinos are very light, the $K \to \pi \chi \chi$ decay is possible and can lead to a non-standard p_{π} spectrum.

- ▶ the p_{π} spectrum for $K \to \pi \chi \chi$ depends on the mass of the neutralinos
- more difficult to separate from backgrounds

Dreiner et al. Phys. Rev. D80 (2009)